وقد تتصل الكواكب المتحيرة بالكواكب الثابتة إذا بينهما بعد تسديس وتثليث وتربيع ومقابلة وكذلك أيضاً تلقى الكواكب المتحيرة والثابتة الشعاع على دائرة فلك البروج بأقدار مختلفة تزيد وتنقص بقدر اختلاف العروض فإذا عرف مقدار ما بين الكوكبين علم إن كانا على شكل من أشكال الاتصالات. وأما الكواكب الثابتة فلإبطاء حركتها لا يعمل على اتصال المتحيرة بها ولا بإلقاء شعاعها على دائرة البروج إذا كان بعدها عن دائرة البروج بعداً واحداً بهذه الأشكال ولكن ينظر إلى الأشكال التي تكون لها معها عند الأوتاد والمجاسدة سيما مع الشمس وأما المتحيرة يحتاج إلى معرفة أبعاد بعضها عن بعض والأقدار التي تلقي منها الشعاع على دائرة البروج بحسب عروضها عند المواليد والتسيير من بعضها إلى بعض. وأما المقابلة فبين أنها لا تقع على التمام إلا يكون الكوكبان معاً على دائرة البروج أو يكون عرض كل واحد من الكوكبين مساوياً للآخر ويكونا مختلفي الجهتين وإن كان أحد الكوكبين على دائرة البروج والآخر مائلاً عنها في العرض فإن البعد الذي بينهما عند ذلك يكون أقل من بعد المقابلة بقدر عرض الكوكبين عرضاً واحداً في جهة واحدة فإن بعد ما بينهما يقع أقل من المقابلة بمقدار العرضين جميعاً. وأما التربيع الذي يقع من سائر الكواكب على دائرة البروج فإنه أبداً بحال واحدة لا يزيد ولا ينقص عن تسعين كثر العرض أم قل وذلك بين في الكرة التي تقع الدواير على قطبيها. وأما التسديس فإنه إذا كان للكوكب عرض ألقي شعاعه على دائرة البروج على أقل من ستين جزءاً من الجزء الذي هو فيه ويلقى شعاعه من التثليث على أكثر من مائة وعشرين بمثل ما ينقص من التسديس. فإذا أردت أن تعلم على كم جزءاً يلقي الكوكب شعاعه من التسديس والتثليث على دائرة البروج إذا كان له عرض فأنقص عرض الكوكب من تسعين واعرف وتر ما يبقى في جداول الأوتار المنصفة فإنه يقع أبداً وتر الضلع الثاني التام الذي قد ذكرناه في باب أقطار المربعات فيما تقدم من هذا الكتاب وفي هذا الباب الذي نحن فيه في هذا الموضع فقط فاحفظه ووتر الضلع الثاني ثم اعرف وتر عرض الكوكب تاماً وذلك بأن تأخذ نصف عرضه وتعرف وتره المنصف وتضعفه فما بلغ فهو وتر عرض الكوكب التام فاضربه في نفسه فما بلغ فاحفظه برسمه ثم خذ وتر الضلع الثاني التام الذي حفظت فاضربه في ستين فما بلغ فزد عليه هذا المضروب في نفسه الذي حفظته برسمه فما بلغ فخذ جذره فما حصل فخذ ما يزيد على ستين فاضربه في مثله فما بلغ فاقسمه على وتر الضلع الثاني التام الذي حفظته فما حصل بالقسمة فانقصه من ستين فما بقي فهو الوتر المعدل فاحفظه ثم خذ زيادة الجذر على الستين أيضاً ثانية فاضربها في وتر الضلع الثاني التام المحفوظ فما بلغ فاقسمه على الوتر المعدل فما حصل فهو حصة التقويم فاحفظها ثم خذ وتر عرض الكوكب التام المضروب في مثله فانقصه من ثلثة آلاف وستمائة التي هي ضرب وتر التسديس التام في نفسه فما بقي فخذ جذره فما حصل الجذر فانقص منه حصة التقويم التي حفظت فما بقي فهو الضلع الثاني المعدل فاعرفه ثم انقص وتر العرض التام المضروب في نفسه أيضاً من ثلثة آلاف وستمائة أيضاً فما بقي فاقسمه على الضلع الثاني المعدل فما حصل فهو الوتر الذي تريد فقوسه كما تقوس الأوتار التامة وذلك بأن تأخذ نصفه فتقوسه في الجدول فما خرجت القوس أضعفتها فما بلغت القوس من تسديس الكوكب في أي الجهتين كان عرضه فانقصه من قف فما بقي فهو مقدار تثليث الكوكب فانقص كل واحد من هذين المقدارين من جزء الكوكب وزد كل واحد منهما أيضاً على جزء الكوكب فما بلغ جزء الكوكب بعد الزيادة أو النقصان فاعرفه فالموضع الناقص هو موضع تسديسه وتثليثه الأول والموضع الزائد هو موضع التثليث والتسديس الثاني الذي يقعان منه على دائرة البروج إن شاء الله.